29. The open-loop transfer function of a dc motor is given as $\frac{\omega(\mathrm{s})}{\mathrm{V}_{\mathrm{a}}(\mathrm{s})}=\frac{10}{1+10 \mathrm{~s}}$, when connected in feedback as shown below, the approximate value of K_{a} that will reduce the time constant of the closed loop system by one hundred times as compared to that of the open-loop system is

(A) 1
(B) 5
(C) 10
(D) 100

Answer: (C)
30. In the circuit shown below, the knee current of the ideal Zener diode is 10 mA . To maintain 5 V across R_{L}, the minimum value of R_{L} in Ω and the minimum power rating of the Zener diode in mW , respectively, are

(A) 125 and 125
(B) 125 and 250
(C) 250 and 125
(D) 250 and 250

Answer: (B)
31. The following arrangement consists of an ideal transformer and an attenuator which attenuates by a factor of 0.8 An ac voltage $\mathrm{V}_{\mathrm{wx1}}=100 \mathrm{~V}$ is applied across WX to get an open circuit voltage $\mathrm{V}_{\mathrm{YZ1}}$ across YZ . Next, an ac voltage $\mathrm{V}_{\mathrm{YZ2}}=100 \mathrm{~V}$ is applied across YZ to get an open circuit voltage $\mathrm{V}_{\mathrm{WX} 2}$ across WX . Then, $\mathrm{V}_{\mathrm{YZ} 1} / \mathrm{V}_{\mathrm{WX} 1}, \mathrm{~V}_{\mathrm{WX} 2} / \mathrm{V}_{\mathrm{YZ} 2}$ are respectively.
(A) $125 / 100$ and $80 / 100$
(B) $100 / 100$ and $80 / 100$
(C) $100 / 100$ and $100 / 100$
(D) $80 / 100$ and $80 / 100$

Answer: (C)

|EC-GATE-2013 PAPER|

32. Two magnetically uncoupled inductive coils have Q factors q_{1} and q_{2} at the chosen operating frequency. Their respective resistances are R_{1} and R_{2}. When connected in series, their effective Q factor at the same operating frequency is
(A) $\mathrm{q}_{1}+\mathrm{q}_{2}$
(B) $\left(1 / \mathrm{q}_{1}\right)+\left(1 / \mathrm{q}_{2}\right)$
(C) $\left(\mathrm{q}_{1} \mathrm{R}_{1}+\mathrm{q}_{2} \mathrm{R}_{2}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$
(D) $\left(\mathrm{q}_{1} \mathrm{R}_{2}+\mathrm{q}_{2} \mathrm{R}_{1}\right) /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)$

Answer: (C)
33. The impulse response of a continuous time system is given by $h(t)=\delta(t-1)+\delta(t-3)$. The value of the step response at $t=2$ is
(A) 0
(B) 1
(C) 2
(D) 3

Answer: (B)
34. The small-signal resistance (i.e., $d V_{B} / \mathrm{dI}_{\mathrm{D}}$) in $\mathrm{k} \Omega$ offered by the n -channel MOSFET M shown in the figure below, at a bias point of $V_{B}=2 \mathrm{~V}$ is (device data for M : device transconductance parameter $k_{N}=\mu_{n} C_{o x}^{\prime}(W / L)=40 \mu A / V^{2}$, threshold voltage $\mathrm{V}_{\mathrm{TN}}=1 \mathrm{~V}$, and neglect body effect and channel length modulation effects)

(A) 12.5
(B) 25
(C) 50
(D) 100

Answer: (B)
35. The ac schematic of an NMOS common-source stage is shown in the figure below, where part of the biasing circuits has been omitted for simplicity. For the nchannel MOSFET M, the transconductance $g_{m}=1 \mathrm{~mA} / \mathrm{V}$, and body effect and channel length modulation effect are to be neglected. The lower cutoff frequency in Hz of the circuit is approximately at

(A) 8
(B) 32
(C) 50
(D) 200

Answer: (C)

|EC-GATE-2013 PAPER|

36. A system is described by the differential equation $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y(t)=x(t)$. Let $x(t)$ be a rectangular pulse given by
$x(t)=\begin{array}{ll}\boxminus 1 & 0<t<2 \\ \square 0 & \text { otherwise }\end{array}$
Assuming that $y(0)=0$ and $\frac{d y}{d t}=0$ at $t=0$, the Laplace transform of $y(t)$ is
(A) $\frac{e^{-2 s}}{s(s+2)(s+3)}$
(B) $\frac{1-\mathrm{e}^{-2 \mathrm{~s}}}{\mathrm{~s}(\mathrm{~s}+2)(\mathrm{s}+3)}$
(C) $\frac{e^{-2 s}}{(s+2)(s+3)}$
(D) $\frac{1-\mathrm{e}^{-2 \mathrm{~s}}}{(\mathrm{~s}+2)(\mathrm{s}+3)}$

Answer: (B)
37. A system described by a linear, constant coefficient, ordinary, first order differential equation has an exact solution given by $y(t)$ for $t>0$, when the forcing function is $x(t)$ and the initial condition is $y(0)$. If one wishes to modify the system so that the solution becomes $-2 y(t)$ for $t>0$, we need to
(A) change the initial condition to $-\mathrm{y}(0)$ and the forcing function to $2 \mathrm{x}(\mathrm{t})$
(B) change the initial condition to $2 y(0)$ and the forcing function to $-x(t)$
(C) change the initial condition to $\mathrm{j} \sqrt{2 \mathrm{y}}(0)$ and the forcing function to $\mathrm{j} \sqrt{2 \mathrm{x}}(\mathrm{t})$
(D) change the initial condition to $-2 y(0)$ and the forcing function to $-2 x(t)$

Answer: (D)
38. Consider two identically distributed zero-mean random variables U and V. Let the cumulative distribution functions of U and $2 V$ be $F(x)$ and $G(x)$ respectively. Then, for all values of x
(A) $F(x)-G(x) \leq 0$
(B) $\mathrm{F}(\mathrm{x})-\mathrm{G}(\mathrm{x}) \geq 0$
(C) $(F(x)-G(x)) . x \leq 0$
(D) $(F(x)-G(x)) \cdot x \geq 0$

Answer: (D)
39. The DFT of vector $\square \mathbf{a} \quad \mathbf{b} \quad \mathbf{c} \quad \mathrm{d} \square$ is the $\quad \square a \quad \beta \gamma \delta \square \square$. Consider the product vector
\square
$\square$$\quad q \quad r \quad s \quad l \begin{array}{llll}d & b & c\end{array}$

$$
\begin{array}{llll}
\square \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{~d} \square \\
\square \mathrm{~d} & \mathrm{a} & \mathrm{~b} & \mathrm{c} \square \\
\square & \square \\
\square \mathrm{c} & \mathrm{~d} & \mathrm{a} & \mathrm{~b} \square \\
\square \mathrm{~b} & \mathrm{c} & \mathrm{~d} & \square \\
\square
\end{array}
$$

The DFT of the vector $\square \mathrm{p} \quad \mathrm{q} \quad \mathrm{r} \quad \mathrm{s} \square$ is a scaled version of
(A) $\begin{array}{lll}\square a^{2} & \gamma^{2} & \delta^{2} \\ \beta^{2} & \square\end{array}$
(B) $\sqrt{\mathrm{a}} \sqrt{\beta} \sqrt{\gamma} \sqrt{\delta} \square$
(C) $\square a+\beta \beta+\delta \delta+\gamma \gamma+\alpha \square$
(D) $\quad \square a \quad \beta \quad \gamma \quad \delta \square$

Answer: (A)

|EC-GATE-2013 PAPER|

40. The signal flow graph for a system is given below. The transfer function $\frac{Y(s)}{U(s)}$ for this system is
(A) $\frac{\mathrm{s}+1}{5 \mathrm{~s}^{2}+6 \mathrm{~s}+2}$
(B) $\frac{\mathrm{s}+1}{\mathrm{~s}^{2}+6 \mathrm{~s}+2}$
(C) $\frac{s+1}{s^{2}+4 s+2}$
(D) $\frac{1}{5 s^{2}+6 s+2}$

Answer: (A)
41. In the circuit shown below the op-amps are ideal. The $\mathrm{V}_{\text {out }}$ in Volts is

(A) 4
(B) 6
(C) 8
(D) 10

Answer: (C)
42. In the circuit shown below, Q_{1} has negligible collector-to-emitter saturation voltage and the diode drops negligible voltage across it under forward bias. If V_{cc} is $+5 \mathrm{~V}, \mathrm{X}$ and Y are digital signals with 0 V as logic 0 and V_{CC} as logic 1 , then the Boolean expression for Z is

(A) XY
(B) $\bar{X} Y$
(C) $X \bar{Y}$
(D) XY

Answer: (B) 10

|EC-GATE-2013 PAPER|

43. A voltage 1000sin $\omega \mathrm{t}$ Volts is applied across YZ. Assuming ideal diodes, the voltage measured across WX in Volts, is

(A) $\sin \omega t$
(B) $(\sin \omega t+|\sin \omega t|) / 2$
(C) $(\sin \omega t-|\sin \omega t|) / 2$
(D) 0 for all t

Answer: (D)
44. Three capacitors C_{1}, C_{2} and C_{3} whose values are $10 \mu \mathrm{~F}, 5 \mu \mathrm{~F}$, and $2 \mu \mathrm{~F}$ respectively, have breakdown voltages of $10 \mathrm{~V}, 5 \mathrm{~V}$, and 2 V respectively. For the interconnection shown below, the maximum safe voltage in Volts that can be applied across the combination, and the corresponding total charge in $\mu \mathrm{C}$ stored in the effective capacitance across the terminals are respectively.

(A) 2.8 and 36
(B) 7 and 119
(C) 2.8 and 32
(D) 7 and 80

Answer: (C)
45. There are four chips each of 1024 bytes connected to a 16 bit address bus as shown in the figure below. RAMs $1,2,3$ and 4 respectively are mapped to addresses

|EC-GATE-2013 PAPER|

(A) $0 \mathrm{C} 00 \mathrm{H}-\mathrm{OFFFH}, 1 \mathrm{COOH}-1 \mathrm{FFFH}, 2 \mathrm{C} 00 \mathrm{H}-2 \mathrm{FFFH}, 3 \mathrm{C} 00 \mathrm{H}-3 \mathrm{FFFH}$
(B) $1800 \mathrm{H}-1 \mathrm{FFFH}, 2800 \mathrm{H}-2 \mathrm{FFFH}, 3800 \mathrm{H}-3 \mathrm{FFFH}, 4800 \mathrm{H}-4 \mathrm{FFFH}$ (C)
$0500 \mathrm{H}-08 \mathrm{FFH}, 1500 \mathrm{H}-18 \mathrm{FFH}, 3500 \mathrm{H}-38 \mathrm{FFH}, 5500 \mathrm{H}-58 \mathrm{FFH}$ (D)
$0800 \mathrm{H}-\mathrm{OBFFH}, 1800 \mathrm{H}-1 \mathrm{BFFH}, 2800 \mathrm{H}-2 \mathrm{BFFH}, 3800 \mathrm{H}-3 \mathrm{BFFH}$
Answer: (D)
46. In the circuit shown below, the silicon npn transistor Q has a very high value of β. The required value of R_{2} in $k \Omega$ to produce $I_{C}=1 \mathrm{~mA}$ is

(A) 20
(B) 30
(C) 40
(D) 50

Answer: (C)
47. Let U and V be two independent and identically distributed random variables such that $\mathrm{P}(\mathrm{U}=+1)=\mathrm{P}(\mathrm{U}=-1)=\frac{1}{2}$. The entropy $\mathrm{H}(\mathrm{U}+\mathrm{V})$ in bits is
(A) $3 / 4$
(B) 1
(C) $3 / 2$
(D) $\log _{2} 3$

Answer: (C)

Common Data Questions: 48 \& 49

Bits 1 and 0 are transmitted with equal probability. At the receiver, the pdf of the respective received signals for both bits are as shown below.

48. If the detection threshold is 1 , the BER will be
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{8}$
(D) $\frac{1}{16}$

Answer: (D)

